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Subspace Fitting Approaches for Frequency
Estimation Using Real-Valued Data

Kaushik Mahata

Abstract—A novel data covariance model has recently been pro-
posed for the subspace-based estimation of multiple real-valued
sine wave frequencies. In this paper, we develop weighted subspace
fitting approaches using this new data model. A new parameter-
ization of the noise subspace is proposed. This parameterization
is used to solve the subspace fitting problem analytically. An ex-
pression for the residual covariance matrix is derived. This co-
variance matrix is further used to obtain an optimally weighted
Gauss—Markov estimator. A computationally efficient suboptimal
weighting is also proposed, and the associated estimator is close
to the Gauss—-Markov estimator in performance. The suboptimal
weighting strategy is quite general and can be used in other re-
lated applications. The performance of the algorithms are illus-
trated using numerical simulations. The proposed subspace fitting
approach shows improved resolution performance. It is also robust
to additive noise.

Index Terms—Frequency estimation, real-valued data, spectral
analysis, subspace methods, weighted subspace fitting.

I. INTRODUCTION

HE problem of estimating the spectral lines from a se-

quence of real-valued data samples arises naturally in
many practical applications like nuclear magnetic resonance
spectroscopy, passive sonar, ultrasound imaging, and so forth.
When subspace methods like MUSIC [1] or ESPRIT [2] are
employed to estimate real-valued sinusoidal frequencies, it is
generally pretended that the data consist of a double number
of complex-valued sinusoidal signals. However, the resolution
performance of the conventional subspace algorithms (designed
primarily for complex-valued sine waves) when employed to
real-valued data are not as good as the case when they are
employed to complex-valued data. Recently, an alternative
data model (RDM) has been proposed for subspace-based esti-
mation of real-valued sine wave frequencies [3]. The primary
advantage of using RDM over the conventional complex-valued
covariance matrix model is that the dimension of the signal
subspace in RDM equals the number of sinusoids present in
the data. This is half of the signal subspace dimension for the
conventional complex-valued data model. As a result, the fre-
quency estimates derived using RDM perform better for small
dimensions of the covariance matrix model. This advantage has
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been exploited in [3], where an ESPRIT like algorithm, named
R-Esprit, was proposed. R-Esprit is equivalent to forward-back-
ward ESPRIT [4] in performance but is computationally more
efficient.

All subspace-based frequency estimation methods (including
R-Esprit) exhibit excellent resolution performance when the
signal-to-noise ratio (SNR) is high. In fact, the asymptotic
(when the number of data samples is large) covariance ma-
trix of the frequency estimates can be shown to be inversely
proportional to the square of the SNR [4], [S]. However, the
performance degrades significantly with decrease in the SNR.
This phenomenon is even more prominent when the data are
real-valued. We attempt to remedy this problem in this paper,
where our prime objective is to combine the nice properties of
the well-known subspace fitting approaches [4], [6], [7] with
the advantages associated with RDM to develop noise tolerant
estimators with improved resolution capability at low SNR. For
the algorithms where the data are modeled as the superposition
of complex-valued sine waves, a computationally efficient
weighted subspace fitting (WSF) approach has been designed
in [4]. An expression for the optimal weighting matrix was also
derived in [4]. The same WSF problem was again considered
in [6], where the results in [4] were refined, and further per-
spectives were given. Here, we follow the ideas presented in
[6] to develop a computationally efficient WSF estimator for
the real-valued data case. Consider

d

yo(t) = Y arcos{wit + ¢}, y(t) = yo(t) +5(t) (D)

k=1

where () is a zero mean white measurement noise of variance
o2, and ¢y, is uniformly distributed on [0, 27) for all k,1 <
k < d. Without any loss of generality, we assume 0 < w; <
-++ < wg < m. The amplitudes {a; }¢_, and the noise variance
o? are assumed to be unknown. It is further assumed that the
random variables { d)k}z:l are pairwise independent, as well as
independent of ¢(t). The central problem under consideration
of this paper is to estimate the parameter vector

wo 1= w1 wd| 2)
from the observed data {y(t)}Y,.

In the next section, we give a brief description of RDM.
In Section III, we develop the subspace fitting algorithm and
present its analysis. A comparative performance study of the
different algorithms will be presented in Section IV, followed
by conclusions in Section V.
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II. COVARIANCE MATRIX MODEL

In this section, we revisit RDM: the compact covariance ma-
trix model introduced in [3]. By the word compact, we mean
that the noise-free part of the snapshot vector lies in a subspace
of dimension d. Recall that the dimension of the signal subspace
using the conventional complex-valued data model is 2d [8], [9].
The reason why it is beneficial to consider such an alternative
model is the associated improvement in the estimation accuracy
for small values of the dimension m of the snapshot vector. In
order to spell out the details, let us introduce

ye) =ly(t) - ylt+m-1)]" 3)
vt =lt-1) - ye-m]T @
¥() = 5 ye(t) +30(6)} 0

where T denotes the transpose and m > d. From the above
definitions, it is easy to derive using (1) that the jth element of
y(t) is given by

YO = {30+~ 1) + it — )

+ Z ak cos{wi(t —1/2) + ¢} cos{wr(j — 1/2)}. (6)
k=1
Thus, from (6), we have

y(t) = A(wo)s(t) + y(t) ()

where A (wg) is an m X d full column rank [3] matrix given by

cos(%) cos(.“—;)
w(5) ()

A(wo) =

cos{(m =)} - cosf(m— )ua)

®)
s(t) is a d x 1 vector given by

a1 cos{wit + ¢}
s(t) = : )

aq cos{wgt + ¢1}

and QS;: = ¢ — (1/2)wy for 1 < k < d. The noise snapshot
vector y(t) is given by

1

ATe(t) +3u(t)}

5 (10)

y(t) =

where y.(t) and y;(t) are noise contributions to y.(¢) and
vu(t), respectively:

ye(t) = [9(t)
yu(t) = [y(t — 1)

gt +m—1)]"
gt —m)]".

(1)
12)

Therefore, in contrast to the complex-valued data model, the
noise-free part of y(¢) lies in a d dimensional subspace. Hence,
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we have now a more compact model, which is real-valued. In-
troduce

P :=E{s(t)s'(t)} (13)
and note that y.(t) and y,(¢) are mutually independent
random vectors for all ¢, which would mean E{y()y ' (t)} =
(02 /2)1,,. It follows readily that

R := E{y(t)y' (t)} = A(wo)PA " (wp) + U;Im. (14)

One can estimate R from the data. This estimate can be pro-
cessed in several different ways to arrive at the estimates of the
frequencies. In contrast to the conventional complex-valued co-
variance matrix model for complex-valued sine waves, in this
case, the matrices involved are all real-valued. On the other
hand, A(wy) is no longer a Vandermonde matrix, which is the
case for the conventional model. However, the structures present
in A (wo) can also be exploited to derive algorithms of low com-
putational complexity, although the associated calculations are
bit more involved as compared to the complex-valued case. Con-
sider the eigenvalue decomposition
R=SAS" +GEG' (15)
where A is a d X d diagonal matrix having the d dominating
eigenvalues of R as its diagonal entries and the m X d ma-
trix S is composed of the corresponding eigenvectors. Simi-
larly, ¥ = 01, 4 is a diagonal matrix having the remaining
m — d eigenvalues of R as its diagonal entries. Columns of the
m x (m — d) matrix G constitute the corresponding eigenvec-
tors. Note that the columns of S constitute an orthonormal basis
of the subspace spanned by the columns of A (wq). After a few
steps of calculations [5], we can show using (14) and (15) that

S = A(w,)C (16)
where
C =PA " (wo)SD™! (17)
o2
D=A- ?Id. (18)

In other words, S contains necessary information about the fre-
quencies, which is the primary motivation behind all the sub-
space approaches.

From the construction of the snapshot vector y(t) in (5), we
see that the number of snapshot vectors available is N — 2m +
1. On the other hand, using the conventional complex-valued
data model, the number of snapshot vectors is N — m + 1.
Hence, the effective data length is reduced for RDM. However,
from (14), we can see that using RDM, the noise contribution
to the covariance matrix R of the snapshot vector y(t) is also
reduced by factor of two. Therefore, if m is small compared
to N, the performance loss due to the reduced effective data
length is insignificant compared with the gain due to enhanced
snapshot SNR. This is the main reason behind the significant
performance improvement of R-Esprit using smaller values of
m. For larger m, degradation in performance is expected (which
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is not a problem from a practical point of view). If the number of
data samples NV is also small, the reduction in the effective data
length, however, is an important issue. This problem is remedied
by using an alternative covariance estimate [see Section III-C
for details] in this work.

III. WEIGHTED SUBSPACE FITTING
A. Background

In the rest of the paper, we use w as the dummy parameter
vector, which will be given element-wise as
w = [w @ ).
We assume that the parameter vector w € D, where we define
the set D C R? such that
D={w|0<wm <wy <<y <7} (19)
Clearly, the true parameter vector wg € D. For any value of the
parameter vector w € D, one can construct a full column rank
matrix G(w) of dimension m x (m — d) such that
07 (@)A (W) = 0(m—a)xa (20)
is satisfied, i.e., the nullspace of AT (w) is spanned by the
columns of G(w). Consider a strongly consistent estimate Ry
of R, and let S denote the m x d matrix composed of the d
dominating eigenvectors of R . Introduce
e(w) = vec[G T (w)S], én(w) =vec[GT(w)SNn]  (21)
where we denote the vectorization operation by vec[-]. The
residual vector éy(w) is an estimate of €(w) obtained by re-
placing S by S in the first equality of (21). Since the columns
of S form an orthonormal basis of the subspace spanned by the
columns of A (wy) [see (15) and (16)], we have
€(wo) = 04(m—d)x1- (22)
Therefore, given G(w), an estimate @y (W) of the parameter
vector wg can be obtained by solving the optimization problem
wn(W) = arg milr% én(w)Wey (w) (23)
w€
where W is a user-defined positive definite weighting matrix.
In the signal processing literature, a similar approach is quite
common and usually referred to as the weighted subspace fit-
ting algorithm [7], [10]. In the following lemma, we study the
consistency property of @y (W).
Lemma 1: Assume that Ry — R with probability one as

N — oo and that W is a positive definite weighting matrix.
Then,

lim @ =
i o (W) = e
with probability one.
Proof: See Appendix A. [ |
Although the specific choice of the weighting matrix W does
not influence the consistency of the frequency estimates, it has
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a significant influence on the asymptotic accuracy of the pa-
rameter estimates. Assume that the necessary conditions needed
to ensure consistency are satisfied. Let the Jacobian matrix of
first-order derivatives of e(w) evaluated at w = wy be given by

I€(W)
Oy

j — [ IE(W)

Jwoq

(24)

] |w:w0 !

Then, the asymptotic (as N — oo) covariance matrix of the
estimate wy (W) is given by [6], [10]

cov{\/NG)N(W)} ={g"wWg}!

x{TTWAWITHI TWI}™ (25)

where A is the asymptotic covariance matrix of the residual
vector:

A = cov{VNéy (wp)}- (26)

The Gauss—Markov estimate @ (W*) has the minimum co-
variance matrix among the class of WSF estimators in the sense
that cov{wn (W)} — cov{wn(W*)} is a positive semidefinite
matrix for all positive semidefinite W. The corresponding op-
timal choice W* of W is given by

W*=A"1 27)
so that the optimal covariance matrix is given by
cov{VNoy(WH} = {7 A 17} L (28)

Using W* as the weighting matrix can be interpreted as
prewhitening of the residual vector; see (23), (26), and (27).
In Section III-D, we derive an explicit expression for A.
Another important issue in a WSF approach is the associated
computational complexity. For an arbitrary choice of G(w),
the approach in (23) is computationally demanding in general,
since the loss function in (23) must be optimized numerically.
In the next section, we present a specific choice of G(w) for
which the optimization problem can be solved analytically.

B. Noise Subspace Parameterization

In this section, our objective is to derive a new noise subspace
parameterization for RDM so that the optimization problem in
(23) can be solved analytically in a noniterative manner. Using
similar recipes given in [4] and [11], we show that the problem
in (23) can be reduced to a WLS problem, which can be solved
readily using standard least squares theory. We have the fol-
lowing lemma which gives a specific noise subspace parame-
terization.

Lemma 2: Letw € D. Define the symmetric polynomial

d d
G(z,w) = Z gr(w)zF = 1_[{,2_1 — 2cos(wy) + z}.
k=—d k=1
(29)

In addition, let gx(w) = O for |k| > d. Introduce the matrix
Go(w) of dimension m x (m — d), which is given element-wise
as

(Go(w)]jk = gj—k(w) + gjsr—1(w). (30)
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Then, Go(w) has a full column rank, and furthermore

G (0)A(W) = 0(m—a)xa- €))

Proof: See Appendix B. [ |

Lemma 2 provides us a way to parameterize the nullspace of

A T (w), which will help us to simplify the optimization problem
in (23). First, note that

(32)

9aw) =g-aw) =1, g-(w) =g -(w)

for all 7. Hence, the polynomial G(z,w) is completely specified
by the vector
(33)

g(w) = [go(w) gdfl(w)]—r'

Since the symmetric polynomial G(z,wq) can be factorized
uniquely in d pairs of mutually reciprocal roots lying on the unit
circle, the parameter vector wy can be recovered from g(wg)
through polynomial rooting. The idea here is to use Go(w) for
G(w) in (21) and solve the optimization problem (23) in g(w)
instead of w. Subsequently, the resulting estimate of g(wy)
is used to construct the estimate of the polynomial G(z,wy).
Then, an estimate of wq is obtained via polynomial rooting.
In what follows next, we show that the loss function in (23) is
quadratic in g(w). To that aim, let us define the sequence of
m x (m — d) matrices {K; }9_,, which are given element-wise
as

(Kjlik = Oj1—k|j + O14k—1,; (34)
where 6y is the Kronecker delta function. Then, it is readily
verified from (30) and (34) that

d
Go(w) =Y K g;(w). (35)
=0

Now, let us define the d(m — d) x 1 vector uy and the d(m —
d) x d matrix U such that

uy = vec{K, Sn}

Uy = [vec{K] Sn} vec{K,] Sn}. (36
Recall that g4(w) = 1 for all w. Substituting §(w) = Go(w) in

(21) and using (35) and (36), we get
éN(w) =uy + UNg(w). 37

Note that the vector uy and the matrix U  are functions of data
only. Hence, the w-dependence of €y (w) is linear in the sense
that €y (w) is a linear function of g(w). This observation leads
us to a simple way to solve the optimization problem in (23),
where the minimization is first carried out with respect to g(w)
to obtain an estimate gx (W) of g(wp):

gn(W) = —[ULWUL]'UL Wuy. (38)
Using g (W), we can form as estimate G/(z) of G(z,wy); see
(29) and (33). Subsequently, the estimate w x (W) is obtained by
rooting G (2). Notice that the roots of the estimated polynomial
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G(z) will not lie on the unit circle in general, but they allways
occur in complex conjugate pairs. Therefore, the arguments of
complex-valued roots of G(z) give the frequency estimates.

C. Covariance Estimates

From (14), it is straightforward to see that R can be estimated
from the data as

1 N—m+1

Ro=—: > y(ty'(®)

t=m+1

(39)

where M = N — 2m + 1. It is well-known that R is a strongly
consistent estimator of R [12]. In that sense, the first require-
ment of Lemma 1 is satisfied if we use Rc for RN. Note in
(39) for relatively small values of N, the number of snapshots
M available for the computation of R can be quite small. For
example, N = 25, and m = 10 implies M = 6 only. This can
result in a poor estimate R., which in fact is the principal disad-
vantage of R-Esprit [3]. However, it is well-known in the litera-
ture that the estimation accuracy can be improved significantly
when the special structures present in the covariance matrix are
considered in the estimation algorithm. In [4], forward—back-
ward symmetry of the covariance matrix was exploited to im-
prove the estimation accuracy significantly. This idea was ex-
tended in [6], where the Toeplitz structure in the covariance ma-
trix was considered. Our objective here is to use the same notion
in the problem under consideration. However, the structure here
is more complicated. To proceed further, we need to define the
autocorrelation sequence of the observed data y(t):

rr = E{y(t+7)y(t)}. (40)

Now, from the definition (14) and (3)—(5), it is easy to verify
that a generic element of R is given as

1
Rlw = Z{"'k—l +ri_g + k-1 + ko). (A1)
Following the treatment given in [6], we see that the complete
structure in R can be exploited if we use an alternative consis-
tent estimator R, which is composed of the estimated autocor-
relation sequence 7 for 0 < 7 < 2m — 1 as

N
R 1 . R
r = Z y(t+71)y(t), 7_r =7 42)
=1
and obtain [lf{*] Ll as
B 1., R
[Rw = E{Tk—l + Prgi—1}- (43)

Note in (42) that the estimates of the autocorrelation 7, are bi-
ased in small samples. We also emphasize that the frequency
estimates using R, will not be large SNR efficient. As a re-
sult, one can notice finite sample bias effects in the resulting
estimates. As far as the weighted subspace fitting approach is
concerned we prefer R* over RC, particularly when the SNR
is relatively low. That is because of improved estimation per-
formance and the possibility to explore the inherent structure in
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further analysis. We also emphasize that R, isa strongly con-
sistent estimator of R.. Therefore, by Lemma 1, the estimate ob-
tained using R, is strongly consistent. From here on, we replace
Ry by R, . The matrix of d dominating eigenvectors of R, will
be denoted by Sy to maintain the same notation. We conclude
this section with the following lemma, which is a consequence
of the structure imposed on R,.
Lemma 3: Let the sequence ¢, (w) be defined as

d

> gr(w)frir

k=—d

- (w) = (44)

where |7| < 2m — d. Then, the matrix G| (w)R., of dimension
(m — d) x m is given element-wise as

A 1
[Gg (w)R ik = 5{(]l—k(w) + qyr—1(w)} (45)
1
= Z{Qk—l(w) + q—k(w)
+ @ir—1(w) + qr_k—i(w)}. (46)
Proof: See Appendix C. [ |

D. Analysis of the Residual

In this section we present a large sample statistical analysis of
the residual vector €y (wp). Such an analysis has a twofold mo-
tivation. Firstly, the covariance matrix A of the residual vector
arises in the expression of the asymptotic covariance matrix of
the parameter vector in (25). Secondly, the knowledge of A is
required to find the optimal weighting W* in (27). Let R, be
used to estimate R. Then for large IV, we have the following
first order perturbation result [5]:

é]\r(wo) = VeéC {GJ(WO)gN}

= vec{G (wo)R.SD !}

= (D7'ST @ L_q)vec[Gy (wo)R.].  (47)
Next, we simplify (47). First, let us introduce the (4m — 2d —
1) x 1 vector
(48)

q(w) = [g-2m+d+1(w) Gom—d—1(w)].

After a few steps of straightforward algebraic manipulations, it
can be verified from (46) that
G (wo)R. = [T1q(wo)

where each of {Tj}7-, is an (m — d) X (4m — 2d — 1) matrix
given by

Tr = [0m-d)x(mr—1) Tm-d Tm-d Opm_dyx(m—)]
+ [0m—dyx(m=k) Im-d Im-a O@n—iyx(mtk—1)] (50)
and J,, is the n X n permutation matrix having ones along its
antidiagonal and zeros elsewhere. Now, define

T:= [T,

T ]". (51)
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Immediately, using (47) and (49), we get

. 1
én(wo) = Z(D 'S"T ® L,—a)Tq(wo). (52)
Thus, to find an expression for A, it only remains to find the
covariance matrix of q(wp). We have the following lemma in
that direction.

Lemma 4: The asymptotic covariance matrix (as N — 00)
Ay of VNq(wo) is given by

Ag = 0*Gi(wo){Lum—1 + Jum—1}G{ (wg)  (53)

where G1(w) is a (4m — 2d — 1) X (4m — 1) matrix given by

Gl(w)
g—d(w) ga(w) 0 0
0 e 0 J—d(w) ga(w)
Proof: See Appendix D. [ |
It can be easily verified that Iy, 1 + J4pn—1 = LLT, where
Lim-1 Op@m-1)x1
L= 01><(2m—1) \/5 (55
Jom-1 O@m-1)x1
Then, it follows from (52) and (53) that
A = U(w)¥ " (wp) (56)
where ¥ (w) is given by
2
T(w) = %(D_IST @In_o)TGi(W)L.  (57)

From the above, it is clear that if d(m — d) > 2m, the residual
covariance matrix A is singular. Note that if A is a singular ma-
trix, one should replace A~!in (27) and (28) by {A+ 77 T},
where X1 denotes the pseudoinverse of X [12]. However, if

span(J) C span(A) (58)

it is sufficient to use AT as the weighting matrix [13]. In fact,
(58) was shown to hold in [6] for the harmonic retrieval problem
using complex-valued data. The proof in [6] can be extended
readily in the current context. Therefore, for singular A, the
associated optimal weighting matrix is given by A, In addition,
for a singular A, the inverse of the matrix J TATT exists [see
(28)] because (58) holds.!

E. Implementation

The optimally weighted subspace fitting algorithm is a
two-step procedure. The main reason for this is the fact that
the residual covariance matrix depends on the true parameter
vector wy. In order to estimate W (wy ), an estimate of G1 (wy) is
required. Hence, it is required to replace wg [or more precisely
g(wo)] by a consistent estimate in (54). An initial estimate

IThe calculations in [6] can be extended in a straightforward manner to show
that 7 has a rank d.
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g(W) can be obtained using (38) for any positive definite
W [one can use W = I,,,(;,—a), for example], and Gl(w) is
straightforward to obtain from g('W). Note that in (57), we can
drop the factor o2 /4, since the subspace estimate of g(wg) in
(38) is invariant up to a scaling of W. Next, in (57), we replace
S by Sy and D by

D=A- {3}

p— (59)

where A and 3 are obtained from the ei genvalue decomposition
of ﬁ*; see (15).

From (56) and (57), it appears that the computation of A
is a computationally expensive operation, particularly for large
value of . This is because we need to multiply several matrices
of large dimensions. However, by exploiting the structures in
T,L, and G;(w) [@ is a consistent estimate of wy], we can
simplify the computations to a large extent. In fact, it turns out
that the task can be achieved without any matrix multiplication.
To spell out the details, let us introduce

B=D"!ST H(@)=TiG(w)L (60)
where B is a d X m matrix, and each of {Hj(w)}}", is an
(m — d) X 2m matrix. Now, from (51) and (57), it is readily
verified that ¥ (&) can be partitioned as

¥, (w) m
V(W) = ; ,wk(w):Z[B]ijj(a) (61)

‘I’d.(‘:’)

for 1 < k < m. The structures in T, L, and G4 (@) can be ex-
ploited to compute {Hj, (@) }7*, in an efficient manner without
any matrix multiplication. Again, D is a diagonal matrix. There-
fore, we can compute B in a very efficient way. In what follows
next, we show that it is sufficient to compute ¥(w) to compute
the optimal WSF estimate [hence, we need not compute and in-
vert A]. Three different cases can arise.

* Incase d(m — d) < 2m, the number of columns in ¥ (@)

is more than the number of rows. In this case, we carry out
the QR factorization of ¥ T ():

' (w)=9R (62)
where Q is a 2m X d(m — d) matrix with mutually orthog-

onal columns, and R is a full-rank d(m — d) x d(m — d)
matrix. Then,

W =A1=[RTR]"L (63)

Hence, we can obtain the optimal WSF estimate of g(wg)
by solving
R TUng=-R Tun (64)

for g in the least squares sense.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 8, AUGUST 2005

TABLE 1
OUTLINE OF THE OPTIMALLY WSF ALGORITHM

1. Compute the covariance sequence {#,}*75,.} 1 in (42) and form the
matrix R, in (43).

2. Compute the eigenvalue decomposition of R., and form Sy using
d dominating eigenvectors of R..

3. Compute D from the eigenvalues of R. as in (59), and compute
B =D"'S}.

4. Form the matrix Uy and the vector ux using (34) and (36).

5. Compute g(&1) = [UNUn]"1URun and G1(&1) using (54),
see dso (32) and (33).

6. Form the matrices {T}7*; in (50), L in (55), and {Hy}7*; in
(60). Compute ¥ (w) using (61).

7. 1f d(m — d) < 2m, use (62) and (64) compute gn (W™),
dseif d(m — d) = 2m use (65) to compute gn(W™),
else use (66) and (68) compute gn (W™).

8. Using gn (W*) form G(z), see (29) and (33), and compute & (W)
by rooting G(z).

o If d(m — d) = 2m, we have ¥(w) as a full rank square
matrix. Then, we can obtain the optimal WSF estimate of
g(wp) by solving g in

¥ 1) Ung = - Ho)uy. (65)

* In case d(m — d) > 2m, the number of columns in ¥ (@)
is less than the number of rows. In this case, A is rank
deficient. Introduce the QR factorization of ¥ (w):

T(w) = QR (66)
where Q is d(m — d) x 2m matrix, and R is a full-rank
2m x 2m matrix. Then

W*= A" = QRRT]71QT". (67)
Hence, we can obtain the optimal WSF estimate of g(wy)
by solving

R™'Q"Uyg=-R™'QTuy (68)
for g in the least squares sense.

Note that if m = d 4+ 1, then Uy is a d X d square matrix.
Then, the system of equations in (37) is no longer overdeter-
mined. In this case, the weight W has no impact on the esti-
mates. However, this situation is not practical in the sense that
using m = d + 1 generally leads to inaccurate estimates.

The summary of the optimally weighted subspace fitting al-
gorithm is given in Table I. Although the optimal weight com-
putation can be carried out in a computationally efficient way,
the optimally weighted WSF algorithm is a two-step procedure
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anyway. To remedy this difficulty, we introduce an ad hoc sub-
optimal weighting. This is motivated by the second equality in
(47). We note for large N that

G (wo)Sy = G{ (wo)R,.SD L. (69)
Clearly, the perturbation due to additive noise in the kth column
of G{ (wo)S is inversely proportional to [D]. Since the con-
dition number of D is often quite large, the estimate of the first
column of G{ (wo)S is much more reliable compared with that
of its dth column.2 Hence, it is natural to weight the kth column
of G{ (wy)Sx by a factor [D]y. This would mean that

W, =D&, 4 ' [D&L,_4 (70
is used as the weighting matrix. As before, for practical imple-
mentation, one needs to replace D by D. Howeyver, this sub-
optimal weighting can be implemented without any knowledge
of wq, and hence, it is a one-step procedure. In addition, the
implementation of the weighting can be done in an efficient
manner, where one multiplies each individual column of S N
by the corresponding diagonal entry of D, which can be ac-
complished by md real multiplications. As a result, the sub-
optimal weighting has much smaller computational complexity.
We show in the next section that the estimate corresponding to
this ad hoc weighting yields estimates having accuracy close to
that of the optimal estimate @y (W*).

IV. NUMERICAL ILLUSTRATIONS

In this section, we illustrate the performance of the algorithms
discussed in the previous sections using numerical simulations.
We consider the optimally WSF approach using both the covari-
ance estimates R, and R, and the subspace fitting with ad hoc
weighting (denoted AD-HOC) in (70). The optimally weighted
subspace fitting approach using R, will be denoted WSF-1,
whereas that using R. will be denoted WSF-2. We compare
the performance of the proposed algorithms with forward-back-
ward ESPRIT (FB-ESPRIT) (as a representative of the tradi-
tional subspace approaches), R-Esprit developed in [3], and the
nonlinear least squares (NLLS) [14]. We choose FB-ESPRIT as
a benchmark since it is known to yield accurate estimates (as
good as WSF estimates for complex data model [4], [6], and
other subspace algorithms) at comparatively less computational
burden. The nonlinear least squares algorithm is chosen as an-
other benchmark because it is the maximum likelihood algo-
rithm and is asymptotically efficient (in a statistical sense). The
root mean square estimation error will be used as the quantita-
tive performance measure of different algorithms. Let {ék}ff;l
be the estimates of # in N, independent Monte Carlo simula-
tions. Then, we express the root mean square error (RMSE) is
computed as

N,
A 1
RMSE(f) = oA > (b1 — 0)?
k=1
2Note that we assume

D11 > -+ > [Dl]aa-
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Fig. 1. Comparison of the RMSE as a function of m obtained from different

approaches (N = 30,w; = 1.4,w, = 1.5) at 7 dB SNR. (2) w;. (b) wa.

In Fig. 1, we have plotted the RMSE obtained using different
algorithms as functions of m: the dimension of the snapshot
vector. The frequencies are w; = 1.4 and wy, = 1.5, whereas
the amplitudes of the sinusoids are a; = 1 and a3 = 1, respec-
tively. The SNR (a3 /20?) is 7 dB [corresponding to o = 0.32].
The number of data samples N is 30. For each value of m,
the individual RMSE of the estimates were computed from 100
independent Monte Carlo simulations. Note that R-Esprit and
WSF-2 use f{c as the covariance estimate. Therefore, for these
two algorithms, we need to satisfy N — 2m + 1 > d. This im-
plies that the maximum permissible value of m is 14 in this ex-
ample. Hence, we have plotted the RMSE of WSF-2 and R-Es-
prit for m < 14. Since we use R, to compute the WSF-1 and
AD-HOC estimates, there is no such limitation on m. Note that
in the NLLS method, we need to solve an optimization problem
numerically. In fact, it is not always possible to find the global
minimum point. It is therefore suggested that we use a subop-
timal method like ESPRIT or the high-order Yule—Walker ap-
proach to obtain the initial point [14]. However, in this example,
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the SNR is low, and these suboptimal initializing methods can
lead to misleading results (see below). Hence, for performance
comparison, the NLLS optimization was initialized at the true
value of the parameter vector.

Notice that in Fig. 1, the RMSEs of FB-ESPRIT, R-Esprit,
and WSF-2 are greater than the difference between the two fre-
quencies [0.1 rad]. This is a clear indication that at this noise
level none of FB-ESPRIT, R-Esprit, or WSF-2 is able to resolve
the frequencies. On the other hand, the subspace fitting based
approaches based on f{* [WSF-1 and AD-HOC] and NLLS are
able to resolve the frequencies. We emphasize that the NLLS
estimate does not depend on m. Hence, the RMSE of the NLLS
is independent of m. It is interesting to notice that WSF-1 and
AD-HOC outperform the NLLS method (although NLLS is ac-
tually the maximum likelihood estimate). The reason behind
this phenomenon is the fact that the subspace fitting-based ap-
proaches are more robust to outliers.?

In Fig. 2, we have depicted the variations of the RMSE ob-
tained using different methods as functions of the SNR. The
values of m for subspace-based methods were kept fixed. For
R-Esprit and WSF-2, we have chosen m = 10. For WSF-2
and AD-HOC, we have m = 12. For FB-ESPRIT, m = 15.
These values were chosen in order to achieve the best perfor-
mances (approximately) for N = 30. In Fig. 2, we note for
SNR below 15 dB, FB-ESPRIT and WSF-2 are unable to re-
solve the frequencies. R-Esprit can resolve the frequencies at
15 dB (although the performance is poor). On average, WSF-1
and AD-HOC performs as well as NLLS in the range 5-12 dB.
For SNR below 5 dB, NLLS outperforms WSF-1 and AD-HOC.
However, we emphasize that this performance of NLLS is ob-
tained using initialization at the true parameter values, which
is not practical. It is also interesting to note that the improved
SNR beyond 7 dB does not bring significant improvement in the
performance of WSF-1 and AD-HOC estimates. This is because
WSF-1 and AD-HOC use R* as the estimate of R and, hence,
are not SNR efficient. Note that even at 15 dB SNR, FB-ESPRIT
is unable to resolve the frequencies. We emphasize in this con-
text that FB-ESPRIT is generally capable of resolving frequen-
cies at similar spacing using the same number of data samples
when the data are composed of complex-valued sinusoids [4],
[6]. Itis also interesting to note both in Figs. 1 and 2 that the loss
in the estimation performance using the ad hoc weighting is not
significant (about 0.03 rad in RMSE) when compared with the
optimally WSF approach.

The computational complexity of different algorithms
are compared in Fig. 3, where we have shown the Matlab
floating-point operations required to compute different esti-
mates. The implementation was done using Matlab 5.3. In
the implementation, all the linear systems of equations were
(arising at different steps of ESPRIT and subspace fitting
algorithms) solved using a QR factorization-based algorithm
for solving linear equations. In the optimal weight computation
for the WSF approach, the structures in the matrices in (57)
were exploited in order to minimize the number of matrix

3The probability of getting an outlier at 7 dB SNR is reasonably high. From
the simulation, this probability was estimated to be 9%.
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Fig.2. Comparison of the RMSE of different methods as functions of the SNR
for fixed m(N = 30,w; = 1.4,ws = 1.5). (a) wy. (b) wa.

multiplications. The numerical optimization involved in the
nonlinear least squares algorithm were carried out using the
separable least squares method (known as the variable projec-
tion algorithm in the literature) [15] using the fminsearch
function in Matlab. The NLLS optimization was initialized
using the R-Esprit algorithm.# In Fig. 3(a), we have plotted
the Matlab floating-point operations required by different al-
gorithms as functions of m, whereas the number of data points
N is kept fixed at 30. It is interesting to note in Fig. 3(a) that
the complexity of the WSF-based approaches are even smaller
than that of the FB-ESPRIT algorithm for smaller values of
m. In fact, for the values of m of interest, the computational
complexity of the AD-HOC approach is comparable to that of
R-Esprit, whereas the complexity of WSF-1 lies between that
of FB-ESPRIT and R-Esprit. For a larger m (which is not a

4We have used noise-free data for generating plots in Fig. 3. R-Esprit is the
computationally most economical alternative to compute the initial values. It is
also reliable at high SNR. However, as we have seen before, this is not a good
choice at low SNR.
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Fig. 3. Comparison of the Matlab floating-point operations as a function of

m obtained from different approaches (N = 30). (b) Matlab floating-point
operations as a function of IV for a fixed m.

practical choice), however, the computational complexities of
WSEF-1 and AD-HOC increase significantly. This is because we
need floating-point operations of the order 13 to compute the
eigen-decomposition of R,. Solving the normal equations (38)
is also computationally demanding for larger values of . In
Fig. 3(b), the Matlab floating-point operations associated with
different approaches are plotted as functions of N, whereas
m is kept fixed. As before, we have m = 10 for R-Esprit and
WSF-2; m = 12 for WSF-1 and AD-HOC; and m = 15 for
FB-ESPRIT. Note that the complexity of WSF-1 and AD-HOC
remains relatively constant with the increase in the data size.
This is because the computational cost of computing the cor-
relation estimates 7, increase at a very slow rate with the data
size, whereas the computation involved in the subsequent steps
remain unchanged. This makes WSF-1 and AD-HOC methods
to be computationally economical alternatives for large N. An-
other interesting point here is that the complexity of AD-HOC
weighting method is about 30% of that of WSF-1 for the values
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of m of interest. However, associated loss in accuracy is not
that significant.

V. CONCLUSION

In this paper, we have proposed a subspace-fitting approach
for estimation of the real-valued sine wave frequencies. We have
presented a novel noise subspace parameterization for the real-
valued data model. This new parameterization helps to simplify
the associated optimization problem and solve it in an analyt-
ical and noniterative manner. We have also presented a statis-
tical analysis of the residual vector, which leads to the opti-
mally WSF estimate. Subsequently, we have proposed a sub-
optimal weighting for which the corresponding estimation ac-
curacy is close to that of the optimal one, whereas the savings
in the computational load is significant. The same suboptimal
weighting can be used in any subspace fitting problem in a
broader perspective, sensor array processing being an example.
The main advantage of the proposed algorithm is its improved
resolution capability in the presence of noise level. Using sim-
ulation study, we have shown that the proposed algorithms can
resolve frequencies when the conventional subspace approaches
fail. At higher noise levels, the proposed approach can outper-
form the maximum likelihood method. The optimally WSF ap-
proach gives best results with N/3 < m < N/2 (N is the
number of data samples). At this range, the complexity of opti-
mally weighted WSF approach is less than that of the FB-ES-
PRIT method. The ad hoc weighting strategy can be seen as a
very low complexity alternative, where we need to compromise
a little in the accuracy. However, the resulting estimates are bi-
ased. This can be seen as a bias-variance tradeoff that is done
in the proposed WSF approach, where the effect of noise on the
covariance matrix of the estimates is reduced significantly for
the expense of finite sample bias. This bias effects can be elim-
inated if the covariance estima}e Rc is used. Hence, for data
with large SNR (or large V), R.. should be used, whereas for
low SNR data and small N, R* is the user’s choice. It is also
interesting to study the effect of using a convex combination

Ra:aﬂ*—i—(l—a)ﬂc, 0<a<l1
as the estimator of R, where the parameter o depends on the
SNR and N.

APPENDIX A
PROOF OF LEMMA 1

In this Appendix, we denote the loss function in (23) by
{n (w, W) and introduce the limiting loss function 4, (w, W):

In(w, W) = &) (w)Wey (w)
lL(w, W) =€ (w)We(w). (71)
The proof of the lemma will be given in three main steps. First,
we establish that ¢/ (w, W) converges uniformly with proba-
bility one to /,(w, W) as N — oo. Then, we show that wy is
the unique global minimum point of the limiting cost function
4(w, W) in D. Finally, these two facts will be used to show
that (W) — wg as N — oo with probability one.
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The covariance estimate R ~ converges to R as NV — oo with
probability one.’ Hence, SN converges to S as N — oo with
probability one [16]. Then, from (21), we can see that €y (w) —
€(w) uniformly as N — oo with probability one. Note that for
uniform convergence, we need to have elements of G(w) to be
uniformly bounded, which is not a restriction. Then, from the
definition in (71), we get {n(w, W) — £, (w, W) uniformly
with probability one as N — oo.

To show that wg is the unique global minimum point
of Li(w,W) in D, first, note from (5) and (71) that
li(wo, W) = 0. Since W is a positive definite matrix,
we note that wy is a global minimum of ¢, (w, W) in D. To
prove the uniqueness, let us assume that there exists another
point w; € D such that 4, (w;, W) = 0 and wy # w;. From
positive definiteness of W, this implies that

€w1) =0gim-nyx1 =G (W1)S = 0(m—ayxd-

Since both G(w; ) and S have full column rank, the last equation
implies that S, A(w1), and A(wp) have the identical column
space; see also (16). Thus, the rank of the matrix

A, =[AWwo) Aw)]
is d. However, this is contradiction since wg # wi implies that
the rank of A, is at least d + 1 [3]. Hence, wy is the unique
global minimum point of £, (w, W) in D.

Now, wy is an interior point of the open set D. Using a well-
known result in [17] (see also [18]), we conclude that the global
minimum point @y (W) of the loss function £y (w, W) con-
verges to the unique global minimum point wq of the limiting
loss function £, (w, W) with probability one as N — oc.

APPENDIX B
PROOF OF LEMMA 2

From the construction of the polynomial G(z,w) in (29), it
follows that

G, w) =0, 1<k<d. (72)

Multiplying both sides of (72) by ¢!? (for any arbitrary ¢) and
taking the real part, we have

d

Z gr(w) cos(wrT + @) = 0.

T=—d

(73)

Next, using (73), we show that every element of the matrix

X := G (w)A(w) (74)

equals zero. To that aim, we first note using (8) and (30) that a
generic element of X is given by

Z{QJ k

w)cos[(j — 1/2)w]

+g1—j—k(w) cos[(1/2 — j)wi]} (75)

5The same is true for R and R . Therefore, the proof also holds for weighted
subspace fitting estimate using R. and R,.
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where we have used cos(—6) = cos(f) and gi (w) = g—i(w).
Now, with a straightforward change in variables in (75), it is
easy to derive that

m—k

>

T=—m—k+1
Now, recall that 1 < k < m —d. Hence, we seethat m — k > d
and —m+1—k < —m < —d. Since g, (w) = 0if |7| > d, we
have from (76)

m—k

2

T=—m—k+1

[X]w = gr(w)cos[(t+ &k —1/2)wy].  (76)

[X]w: = gr(w) cos[aT + wi(k —1/2)] =0 (77)
using (73). It remains to show that Go(w) has a full column
rank. Partition Go(w) into a d X (m — d) matrix G11(w) and a
(m — d) X (m — d) square matrix Go;(w) such that

o [222).

We show that G (w) is an upper triangular matrix. Consider
the element at the (j + k)th row and jth column of G (w),
where £ > 0. We have

[G21(W)](j+1).5 = [Go(W)](a+j+k).i
= ga+k(W) + gar2j+k-1(w) =0 (79)

since j > 0, and k > 0, and by definition, ¢, (w) = 0 for all
|7| > d. Similarly, we can verify that the elements in the upper
triangle of Go1 (w) are nonzero. In fact, using k£ = 0 in (79), we
see that [Ge1(w)];; = ga(w) for all j. With this observation,
the lemma is proved.

(78)

APPENDIX C
PROOF OF LEMMA 3
Let
P; = G| (w)R,. (80)
Using (30) and (43), we get
1 & . R
[P1]ij = 2 > {9k + givk 1 He g+ Py 1} 8D

k=1
where we have omitted the argument w for simplicity. Using

gi—r = gr—i, we have after a straightforward change of sum
indices

3 m—+ti—1
= g 7'7—-!,-7 _]+ Z gTT‘r—l—j i

T=1

m—+i—1
gr TT—|—7,+] 1+ Z 97-7"1- i—J+1

—1 T=1

m—1

>

T=—m—1+1

g‘rTAT-I-i—j + gT’F‘r+i+j—1 (82)

T=—m—1+1
where in the last equation, we have used that g; = g_, and 74 =
7_¢. Recall that 1 < 7 < m — d. Therefore, the maximum value

of the lower sum index is —m, whereas the minimum value of
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the upper sum index is d. In addition, g, = 0 for |7| > d. Hence,
from (44), we get

2[P1)ij = qi—j + ditj—1 (83)

which proves (45). Note that by definition, ¢, (w) is a symmetric
sequence. This fact leads us to (46).

APPENDIX D
PROOF OF LEMMA 4

Let us define the correlation vector

r=[r_omiy1 - 7o rom—1]'. (84)

Then, from the definition of G in (54) and the definition of q
in (48), we have, using (44)

qw) = Gi(w)r

where T denotes the estimate of r. Introduce

y(t)

(85)

y(t+2m —1)]7
(86)

Y= [yt —2m+1)
=Yor T Ui
where y,, is the noise-free part of y(¢), whereas g, is the noise
contribution to y(¢). In this Appendix, we use

N—-2m+1

= > vl

t=2m

87)

Note that the estimate of the autocorrelation sequence according
to (87) is different from that obtained by (42). However, this
difference is only due to the edge effects and vanishes as IV in-
creases. Since we are interested only in the large sample prop-
erties (N — 00), in this section, we are permitted to use the
estimate (87) instead of (42). It is easy to show® from (1), (54),
and (73) that

G1(wo)Yor = 02m—1)x1- (88)
Hence, we have
1 N—2m+1
q(wo) = +G1(wo) ;Z;n 9 {yo(®) +u(0)}. (89

Since yo(t) and g(t) are independent of each other, it follows
from (89) that

o’ M
Eq(wo) = N ! Gi(wo)e (90)
where we denote M; = N — 4m + 2 and
T
€= [OIX(Qm—l) 1 01X(2m—1)] on

Next, in the aim of computing the second-order moments, we
note that the third-order moments of a jointly Gaussian dis-
tributed random variable are zero. Using the well-known for-
mula for the fourth-order moments of jointly Gaussian random
variables, we have

Eq(wo)a (wo) = —5G1(@0)QG (o).  (92)

NQ

6Arguments are similar to that of the Proof of Lemma 1.
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The newly introduced matrix Q is of the form
Q=Q:1+Q2+Q3+Qu (93)
where
N—-—2m+1 N—2m+1
Q= > > E{g,8.} E{w(t)yo(t)} 04
t1=2m to=2m
N-—2m+1 N—-2m+1
Q= Y > E{§,0)}E{it)s,}
t1=2m to=2m
= 0'4M1268T 95)
N—2m+1 N—2m+1
Q= Y > E{gu.}E{Ht)it)} 96
t,=2m  t,=2m
N—2m+1 N—2m+1
Q= Y > E{g,0t:)}E{H0} 0D

t1=2m to=2m

In order to evaluate the right-hand side of (94), we get by
straightforward calculations that Q; is a symmetric Toeplitz
matrix, which is given element-wise as

n 2

[Qulij = 0”(My — |i = 1) Y T cos{(i = j)wr}.

k=1

(98)

After a few more steps of straightforward calculations, one can
show using (73) and (54) that as N — oo

G1(w0)Q1G{ (wo) = Oam—2d—1)x (4m—24—1)- 99)

Similarly, it is easy to verify that Qg is a diagonal matrix and
that Q is an antidiagonal matrix, which are given element-wise
as

(100)
(101)

[Qslij = o*(M — [2m — i])5; ;
[Qulij = o*(M — [2m — i|)8i4j am-

Taking N — oo and combining (90)—(101), the lemma follows.
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